Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials
نویسندگان
چکیده
Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size gradation of the synthesized microcapsules was achieved through a series of sieving processes. The shell thickness and the diameter of single microcapsules was accurately measured under environmental scanning electron microscopy (ESEM). The relationship between the physical properties of the synthesized microcapsules and their micromechanical properties were investigated using nanoindentation. The results of the mechanical tests show that, with the increase of the mean size of microcapsules and the decrease of shell thickness, the mechanical force required to trigger the self-healing function of microcapsules increased correspondingly from 68.5 ± 41.6 mN to 198.5 ± 31.6 mN, featuring a multi-sensitive trigger function. Finally, the rupture behavior and crack surface of cement paste with embedded microcapsules were observed and analyzed using X-ray computed tomography (XCT). The synthesized PF microcapsules may find potential application in self-healing cementitious materials.
منابع مشابه
Evaluation of a Microcapsule Based Self-healing System for Cementitious Materials
An international cooperation research project has been financially supported by China Nature Science Foundation, which consists of three relatively independent, but strategically integrated research sub-programs, aiming at the formation of a selfhealing system based on the microcapsule principle for the cementitious composites. In this paper, a self-healing system triggered by physical process ...
متن کاملPreparation and Properties of Melamine Urea-Formaldehyde Microcapsules for Self-Healing of Cementitious Materials
Self-healing microcapsules were synthesized by in situ polymerization with a melamine urea-formaldehyde resin shell and an epoxy resin adhesive. The effects of the key factors, i.e., core-wall ratio, reaction temperature, pH and stirring rate, were investigated by characterizing microcapsule morphology, shell thickness, particle size distribution, mechanical properties and chemical nature. Micr...
متن کاملMicrocapsule-Type Self-Healing Protective Coating for Cementitious Composites with Secondary Crack Preventing Ability
A microcapsule-type self-healing protective coating with secondary crack preventing capability has been developed using a silanol-terminated polydimethylsiloxane (STP)/dibutyltin dilaurate (DD) healing agent. STP undergoes condensation reaction in the presence of DD to give a viscoelastic substance. STP- and DD-containing microcapsules were prepared by in-situ polymerization and interfacial pol...
متن کاملDesigning Repeatable Self-Healing into Cementitious Materials
Designing self-healing into cementitious materials can open a new world of opportunities for resilient concrete infrastructure under service loading conditions. The self-healing process should be robust as well as repeatable, allowing for self-repair after multiple damage events. The repeatability poses great challenges when self-healing strategies mainly rely on the formation of low-strength c...
متن کاملThermally stable autonomic healing in epoxy using a dual-microcapsule system.
Self-healing is achieved with a dual-microcapsule system utilizing epoxy-amine chemistry in a high temperature cured thermosetting epoxy polymer. One capsule contains a modified aliphatic polyamine prepared by vacuum infiltration of polyoxypropylenetriamine into hollow polymeric microcapsules. The second capsule contains a difunctional epoxide and reactive diluent. Healing efficiency is accesse...
متن کامل